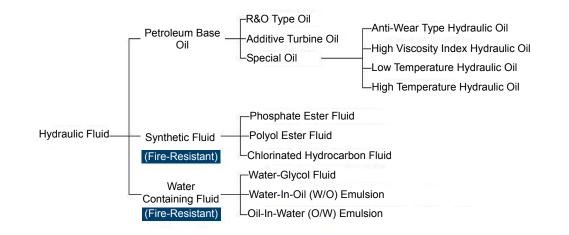
DATA SHEET

Hydraulic Fluid	P. 854
Part 1: Requirements, Classification, and Properties	
Part 2: Viscosity and Contamination Control	
Part 3: Service Limit and Contamination Measuring Instrument	
Part 4: YUKEN's Hydraulic Equipment and Fluid Types (1)	
Part 5: YUKEN's Hydraulic Equipment and Fluid Types (2)	
• Formulas/Nomograms	P. 859
Part 1: (1) Formulas	
(1. Pump Output, 2. Shaft Input, 3. Volumetric Efficiency, 4. Overall Efficiency, etc.)	
Part 2: (1) Cylinder Speed, (2) Cylinder Pressure	
Part 3: (1) Pipe Size/Flow Velocity, (2) Steel Pipes/Tubes	
Part 4: (1) Viscosity vs. Temperature, (2) Viscosity Conversion Chart	
O-Ring Size	P 863
Part 1: JIS B 2401	
Part 2: AS 568 (Former ARP 568), Aerospace Size Standard for O-Rings	
International System of Units (SI)	P. 865
	- P. 868

Hydraulic Fluid [Part 1] Requirements, Classification, and Properties


Requirements

Hydraulic pumps, control valves, and hydraulic cylinders operate at high pressure and high speed; they are also constructed of a variety of materials. Considering these facts as well as fluid temperature and ambient conditions during operation, the following requirements for hydraulic fluids must be met.

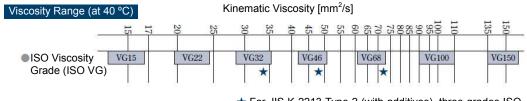
- Maintaining proper viscosity as temperature
- changesFlowable at low temperature
- Flowable at low temperature
- Resistant to high temperature degradationProviding high lubricity and wear resistance
- Highly oxidation stable
- Highly shear stable
- Non-corrosive to metal
- Exhibiting good demulsibility/water
 - separation when mixed with water
- Rust-preventive
- Non-compressible
- Providing good defoaming performance
- Fire-resistant

Classification

JIS standards for hydraulic fluids do not currently exist, and fluids that meet the above requirements and have a viscosity equivalent to that of petroleum based turbine oils (JIS K 2213) are used. Turbine oils are classified into two types: Type 1 (without additives) and Type 2 (with additives). Type 2 turbine oils contain antirust, antioxidant, and other additives. JIS K 2213 Type 2 turbine oils and special oils with a viscosity grade of ISO VG 32, 46, or 68 are widely used. If there is a risk of fire in the event of fluid leakage or blowout from hydraulic systems, fire-resistant synthetic or water containing fluids are employed. These fire-resistant fluids have different properties from petroleum base oils and must be handled carefully in practical applications. Chlorinated hydrocarbon fluids are rarely used for industrial purposes in Japan, since they become highly toxic and corrosive when decomposed. While other fluids are also available, fluids used for general industrial purposes are largely categorized as follows.

Properties (Example)

Hydraulic Fluid Item	Petroleum Base Oil (Type 2 Turbine Oil Equivalent to ISO VG 32)	Phosphate Ester Fluid	Polyol Ester Fluid	Water-Glycol Fluid	W/O Emulsion	O/W Emulsion
Specific Gravity (15/4 °C)	0.87	1.13	0.93	1.04 - 1.07	0.93	1.00
Viscosity 40 °C	32.0	41.8	40.3	38.0	95.1	0.7
(mm²/s) 100 °C	5.4	5.2	8.1	7.7	-	-
Viscosity Index (VI)	100	20	160	146	140	-
Max. Operating Temp. (°C)	70	100	100	50	50	50
Min. Operating Temp. (°C)	-10	-20	-5	-30	0	0
Strainer Resistance	1.0	1.03	1.0	1.2	0.7 - 0.8	(Same As Water)


Data Sheet

Number of particles per 100 ml

Viscosity

The viscosity of industrial lubricants, including hydraulic fluids, is measured by kinematic viscosity v [m²/s], which is obtained by dividing absolute viscosity by density. It is typically expressed in units of square millimeters per second (mm²/s). For viscosity measurement, a capillary viscometer is used to determine kinematic viscosity (mm²/s) as per JIS K 2283 "Crude petroleum and petroleum products - Determination of kinematic viscosity and calculation of viscosity index from kinematic viscosity". Hydraulic fluid viscosity critically affects the performance of hydraulic systems. System operation with a hydraulic fluid viscosity outside the specified range may result in pump suction failure, internal leakage, poor lubrication, valve malfunction, or heat generation in the circuit, shortening the life of equipment or causing a major accident.

According to JIS K 2001 "Industrial liquid lubricants - ISO viscosity classification", 20 viscosity grades are available ranging from ISO VG 2 to 3200. The figure below shows the viscosity range associated with the operation of hydraulic systems. For details, see "Viscosity vs. Temperature" on page 862.

★ For JIS K 2213 Type 2 (with additives), three grades ISO VG 32, 46, and 68 are available.

Contamination control

Cleanliness

Hydraulic fluid replacement is required in the following three cases.

- (a) Deterioration or degradation of the fluid
- (b) Particulate contamination of the fluid
- (c) Water contamination of the fluid

While Table 3 provides guidelines for (a), the necessity of hydraulic fluid replacement is caused by (b) and (c) in most cases. Particulate contamination of hydraulic fluids may result in pump wear or valve malfunction. In particular, the performance of systems equipped with precision valves (e.g. electro-hydraulic servo valves) and actuators is adversely affected by fine particles of a few micrometers to a few tens of micrometers. Thus, it is necessary to control the level of contamination properly by measuring the size and number of particles in the fluid with a microscope or by measuring the mass of particles per unit volume of the fluid. For the determination of the fluid cleanliness level, filter 100 ml of the fluid through a filtration device and collect particles on a millipore filter (a filter with fine pores of 1/1000 mm). Measure the number and size of the collected particles for classification as shown in Table 1. For highly contaminated fluids, determine the cleanliness level of Class 6 to 8 shown in Table 1.

	Table TINAS Cleaniness Level based of Faiticle Counting						Nume		licies per						
Size Class (NAS 1638)															
	(<i>μ</i> m)	00	0	1	2	3	4	5	6	7	8	9	10	11	12
	5 - 15	125	250	500	1,000	2,000	4,000	8,000	16,000	32,000	64,000	128,000	256,000	512,000	1,024,000
	15 - 25	22	44	89	178	356	712	1,425	2,850	5,700	11,400	22,800	45,600	91,000	182,400
	25 - 50	4	8	16	32	63	126	253	506	1,012	2,025	4,050	8,100	16,200	32,400
	50 - 100	1	2	3	6	11	22	45	90	180	360	720	1,440	2,880	5,760
	More than 100	0	0	1	1	2	4	8	16	32	64	128	256	512	1,024

NAS: National Aerospace Standard ISO: International Organization for Standardization

Table 2 Classification Based on the Gravimetric Method

Table 1 NAS Cleanliness Level Based on Particle Counting

NAS	Class	100	101	102	103	104	105	106	107	108
NA3	mg/100 ml	0.02	0.05	0.10	0.3	0.5	0.7	1.0	2.0	4.0
	Class	A	В	С	D	E	F	G	Н	I
MIL	mg/100 ml	Less than 1.0	1.0 - 2.0	2.0 - 3.0	3.0 - 4.0	4.0 - 5.0	5.0 - 7.0	7.0 - 10.0	10.0 - 15.0	15.0 - 25.0

MIL: Military Specifications and Standards

Hydraulic Fluid [Part 3] Service Limit and Contamination Measuring Instrument

Service limit

Unused R&O type oils contain 50 to 80 ppm (0.005 to 0.008%) of water, but the water content increases due to entry of atmospheric moisture through the actuator or air breather. Water may cause rust on the inside of hydraulic equipment, poor lubrication, or accelerated degradation of the hydraulic fluid. The water content of the fluid is measured by Karl Fischer titration (based on the quantitative reaction of the reagent with water) with a sensitivity of 10 ppm. The particulate/water contamination tolerance of hydraulic fluids varies depending on the system configuration as outlined in Tables 4 and 5.

Table 4 Recommended Control Level of Fluid Contamination

Sustem Configuration	Class		
System Configuration	JIS B 9933 (ISO 4406)	NAS	
System with Servo Valve	18/16/13	7	
System with Piston Pump	20/18/14	9	
System with Proportional Electro-Hydraulic Control Valve	20/18/14	9	
System Operating at Pressures Higher than 21 MPa	20/18/14	9	
System Operating at Pressures of 14 to 21 MPa	21/19/15	10	
General Low Pressure Hydraulic System	21/20/16	11	

★ Comparison of JIS B 9933 (ISO 4406) and NAS for reference

Table 5 Water Contamination Tolerance of R&O Type Oils

Table 3 Criteria for Hydraulic Fluid Replacement (Example)

Fluid Type	Petroleum Base Oil			Water-Glycol
Test Item	R&O	O Anti-Wear		Fluid
Kinematic Viscosity (40 °C)* mm ² /s		±10%	±10%	
Total Acid		a☆	0.25	
Number* mgKOH/g	0.25	b☆	±40%	-

★: Variation in kinematic viscosity

☆: Additive type (a: Non-zinc based, b: Zinc based)

Table 3 provides guidelines for hydraulic fluid replacement. Detailed specifications vary depending on the manufacturer, and additional control requirements may be applied. Contacting the fluid manufacturer is recommended.

For example, the total acid number (or acid number) is a measure of fluid degradation and affected by the additive type and level. For water-glycol fluids, the pH value is also controlled.

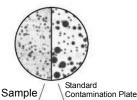
1 ppm = 1/1000000

System Conditions	Service Limit
The hydraulic fluid is cloudy with water.	To be immediately replaced
The system has a circuit for circulating the hydraulic fluid back to the oil tank and operates without long-term shutdown.	500 ppm
The piping length of the system is long, and the hydraulic fluid does not fully circulate in the circuit.	300 ppm
The system remains out of service for a long period (safety system), has a circuit in which the hydraulic fluid hardly moves, or is designed to provide precision control.	200 ppm

• Portable Fluid Contamination Measuring Instrument

YUKEN CONTAMI-KIT

Model Number: YC-100-22


YUKEN'S CONTAMI-KIT is a fluid contamination measuring instrument that samples hydraulic fluids and microscopically measures the distribution of particles collected on a membrane filter as per JIS B 9930 or SAE ARP 598 A.

Specifications

- 1) Power supply: Both AC and DC power supplies supported (100 V AC/6 V DC)
- 2) Microscope magnification: 100 times (40 times: Option for KYC-100-L-20)
- 3) Applicable fluids: Petroleum base oil, polyol ester fluid, and water-glycol fluid (optional)
- 4) Case dimensions: L 600 × W 240 × H 360 mm
- 5) Total mass: Approximately 9 kg
- Features of CONTAMI-KIT
- 1) Usable everywhere
- Portable and supports both AC and DC power supplies (switchable).
- 2) User-friendly
- Requires no skills and involves only comparing the results with the standard contamination plate. 3) Time-efficient
- Takes only about 10 minutes for each measurement. 4) Supporting photo taking

Allows photo taking with a single-lens reflex camera for recording.

Hydraulic Fluid [Part 4] YUKEN's Hydraulic Equipment and Fluid Types (1)

Hydraulic equipment is affected differently depending on the fluid type; special care should be taken when selecting the equipment. The table below shows YUKEN's hydraulic equipment available for each fluid type. For details, see the relevant pages.

	Hydraulic Fluid	Petroleum Base Oil (Equivalent to JIS K 2213 Type 2)	Phosphate Ester Fluid	Polyol Ester Fluid	
A Series Variable Displacement Piston Pump		Standard	Custom: Z6 Seal: Fluororubber	Consult us.	
F	ixed Displacement Vane Pump	Standard	"F-" + Standard Model Seal: Fluororubber	Standard	
Pre	essure Control Valve	Standard	"F-" + Standard Model Seal: Fluororubber	Standard	
F	low Control Valve	Standard	"F-" + Standard Model Seal: Fluororubber	Standard	
Dire	ectional Control Valve	Standard	"F-" + Standard Model Seal: Fluororubber	Standard	
	Modular Valve	Standard	"F-" + Standard Model Seal: Fluororubber	Standard	
	Logic Valve	Standard	"F-" + Standard Model Seal: Fluororubber	Standard	
	Proportional Electro-Hydraulic Control valve	Standard	"F-" + Standard Model ^{★1} Seal: Fluororubber	Standard* ²	
	Servo Valve	Standard	"F-" + Standard Model Seal: Fluororubber	Standard	
der	CJT Series	Standard	"F-" + Standard Model Seal: Fluororubber	Standard	
CJ1 Series		Standard Packing Material: 6 (HNBR)	Semi-Standard Packing Material: 3 (Fluororubber)	Standard Packing Material: 6 (HNBR)	
	Accumulator	Standard/ Commercially Available Product	Butyl Rubber Diaphragm Type/ Piston Type (Except for Aluminum) Permitted	Butyl Rubber Diaphragm Type Prohibited	
	Needle Valve	Standard	"F-" + Standard Model Seal: Fluororubber	Standard	
	Tank Filter	Aluminum Aluminum		Aluminum	
	Oil Level Gauge	vel Gauge Direct Reading Type Remote Read		Direct Reading Type	
	Rubber Tube	Nitrile Rubber	Butyl Rubber	Nitrile Rubber	
	oil Tank Epoxy/Phenolic Coating Permitted		Inside Coating Prohibited (Chemical Conversion Coating Permitted)	Phenolic Coating Prohibited	
	Effect on Metals	None	Aluminum Sliding Parts Prohibited	None	
	Nitrile Rubber	Permitted	Prohibited	Permitted	
	Fluororubber	Permitted	Permitted	Permitted	
	Silicone Rubber	Prohibited	Permitted	Permitted	
	Butyl Rubber	Prohibited	Permitted	Prohibited	
Seal	Ethylene Propylene Rubber	Prohibited	Permitted	Permitted	
	Urethane Rubber	Permitted	Prohibited	Permitted	
Fluororesin		Permitted	Permitted	Permitted	
	Chloroprene	Permitted	Prohibited	Permitted	
	Leather	Permitted	Permitted	Permitted	
	Other	-	Protect electrical wiring by applying oil resistant coating or by running it in conduits.	-	

★1. Contact us for details of EH Series High Response Directional and Flow Control Valves (EHDFG-04/06).

★2. Contact us for details of EH Series Directional and Flow Control Valves (EHDFG-03) and EH Series High Response Directional and Flow Control Valves (EHDFG-04/06).

Data Sheet

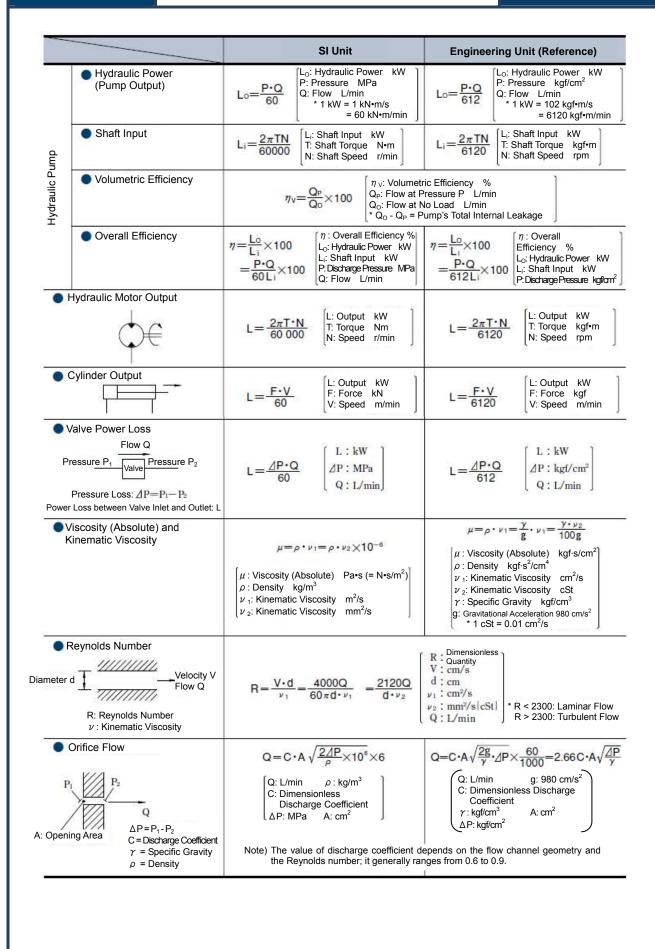
Hydraulic Fluid [Part 5] YUKEN's Hydraulic Equipment and Fluid Types (2)

Data Sheet

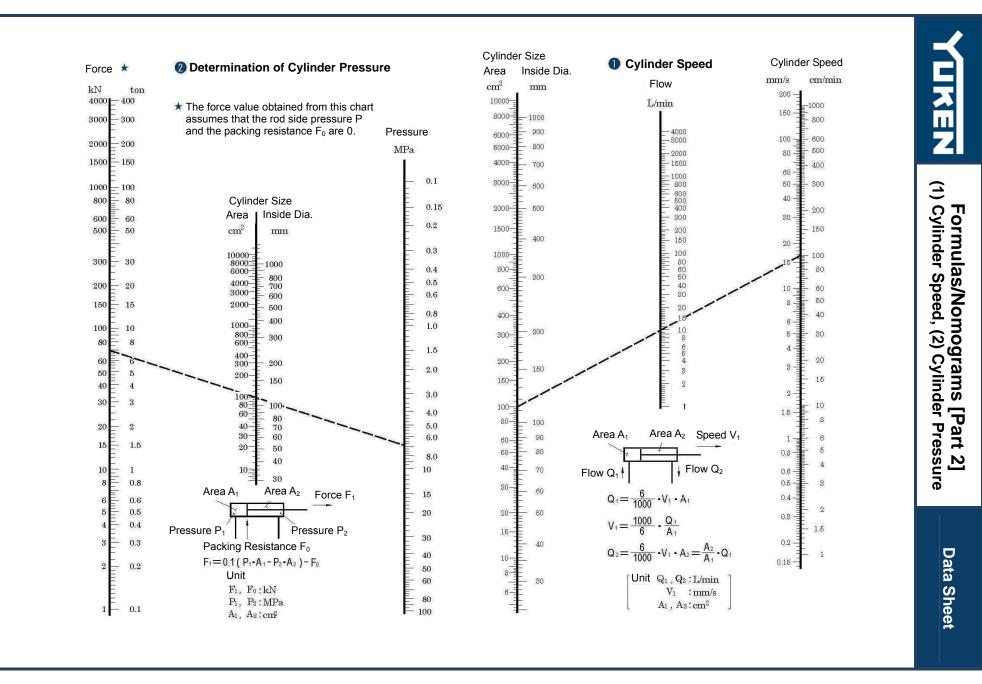
Equi	Hydraulic Fluid	Water-Glycol Fluid	W/O Emulsion	O/W Emulsion
A Series Variable Displacement Piston Pump		Custom: Z30	Custom: Z30	Consult us.
Fix	ked Displacement Vane Pump	"M-" + Standard Model PV2R: Standard	Custom: Z35 ("M-" + Standard Model in some cases) PV2R: Standard	Consult us.
Pres	ssure Control Valve	Standard	Consult us.	Consult us.
FI	ow Control Valve	Standard	Consult us.	Consult us.
D	irectional Control Valve	Standard	Standard	Consult us.
	Modular Valve	Standard	Consult us.	Consult us.
	Logic Valve	Standard	Consult us.	Consult us.
E	Proportional lectro-Hydraulic Control Valve	Standard* ¹	Consult us.	Consult us.
	Servo Valve	Standard* ²	Consult us.	Consult us.
Ider	CJT Series	Standard Seal: Nitrile Rubber	Standard Seal: Nitrile Rubber	Custom Seal: Nitrile Rubber
Cylinder	CBY14 Series	Standard Packing Material: 6 (HNBR)	Standard Packing Material: 6 (HNBR)	Standard Packing Material: 6 (HNBR)
	Accumulator	Standard/ Commercially Available Product	Standard/ Commercially Available Product	Standard/ Commercially Available Product
	Needle Valve	Standard	Standard	Standard
	Tank Filter	Stainless Steel (Aluminum, Cadmium, or Galvanizing Prohibited)	Aluminum/Stainless Steel (Cadmium or Galvanizing Prohibited)	Stainless Steel (Aluminum Prohibited)
(Dil Level Gauge	Direct Reading Type	Direct Reading Type	Direct Reading Type
	Rubber Tube	Nitrile Rubber	Nitrile Rubber	Nitrile Rubber
lı	nside Coating of Oil Tank	Inside Coating Prohibited (Chemical Conversion Coating Permitted)	Inside Coating Prohibited (Chemical Conversion Coating Permitted)	Epoxy Coating Permitted
E	Effect on Metals	Aluminum, Cadmium, or Zinc Prohibited	Copper, Cadmium, or Zinc Prohibited	None
	Nitrile Rubber	Permitted	Permitted	Permitted
	Fluororubber	Permitted	Permitted	Permitted
	Silicone Rubber	Prohibited	Prohibited	Prohibited
al	Butyl Rubber Ethylene	Permitted	Prohibited	Prohibited
Sea	Propylene Rubber	Permitted	Prohibited	Prohibited
	Urethane Rubber	Prohibited	Prohibited	Prohibited
	Fluororesin	Permitted	Permitted	Permitted
	Chloroprene Leather	Permitted Prohibited	Permitted Prohibited	Permitted Prohibited
	Other	-	Be sure to have the oil tank bottom tilted and equipped with a drain cock.	-

★1. Contact us for details of EH Series High Response Directional and Flow Control Valves (EHDFG-04/06).

 \star 2. Contact us for details of the following products.


- On-Board Electronics Type Linear Servo Valves without DR Port (Wet Type Pilot Valve: LSVHG-*EH-*-W)

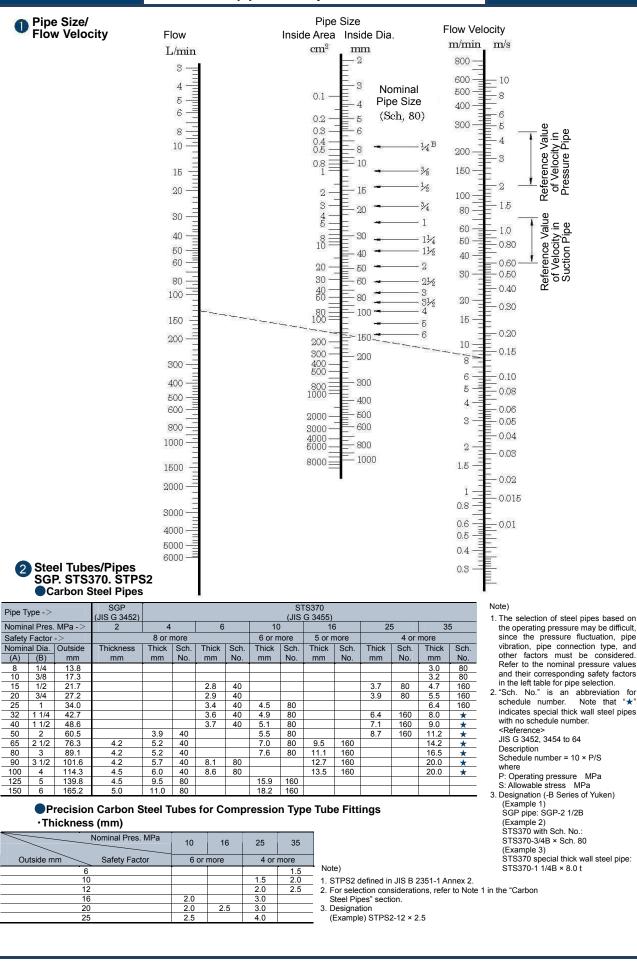
_



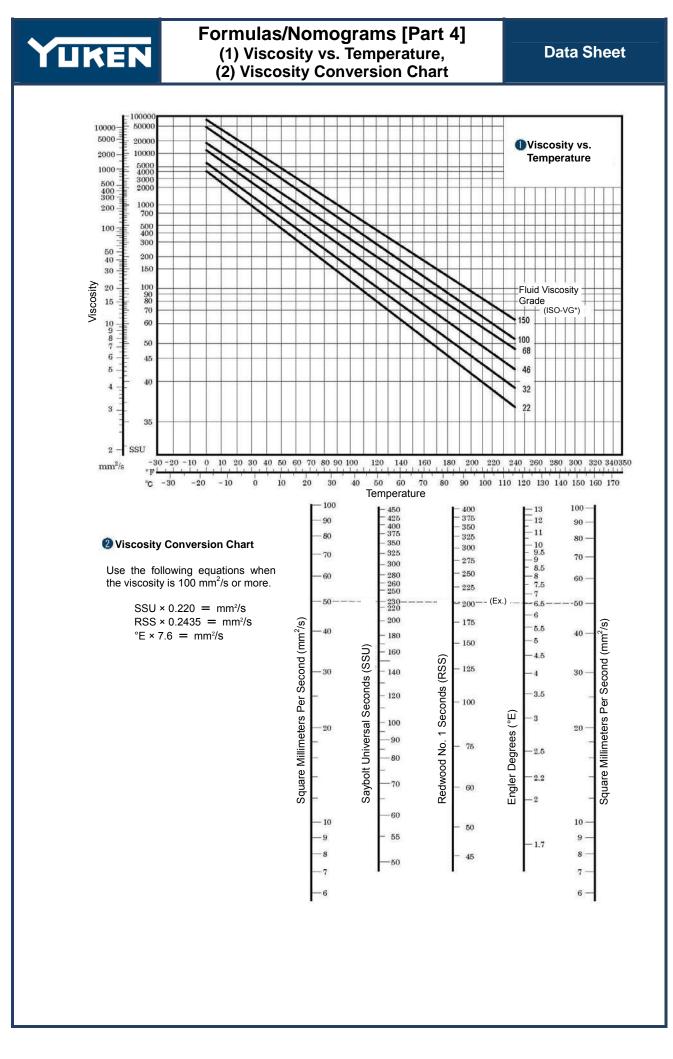
Formulas/Nomograms [Part 1] (1) Formulas

Data Sheet

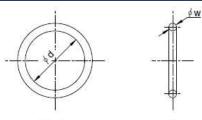
Data



860


Formulas/Nomograms [Part 3] (1) Pipe Size/Flow Velocity,

(2) Steel Pipes/Tubes



Data

Sheet

JIS B 2401-1 ^A B-P*				
esignation -	Actual Si	ze (mm)		
esignation	d	w		
P 3 P 4 P 5 P 6 P 7	2.8 3.8 4.8 5.8 6.8	1.9		
P 8 P 9 P 10	7.8 8.8 9.8	1.9		
P 10A P 11	9.8 10.8	2.4		
P 11.2 P 12 P 12.5 P 14 P 15	11.0 11.8 12.3 13.8 14.8	2.4		
P 16 P 18 P 20 P 21 P 22	15.8 17.8 19.8 20.8 21.8	2.4		
P 22A P 22.4 P 24 P 25 P 25.5	21.7 22.1 23.7 24.7 25.2	3.5		
P 26 P 28 P 29 P 29.5 P 30	25.7 27.7 28.7 29.2 29.7	<mark>3.5</mark>		
P 31 P 31.5 P 32 P 34 P 35	30.7 31.2 31.7 33.7 34.7	3.5		
P 35.5 P 36 P 38 P 39 P 40	35.2 35.7 37.7 38.7 39.7	3.5		
P 41 P 42 P 44 P 45 P 46	40.7 41.7 43.7 44.7 45.7	3.5		
P 48 P 49 P 50	47.7 48.7 49.7	3.5		
P 48A P 50A	47.6 49.6	<mark>5</mark> .7		
P 52 P 53 P 55 P 56 P 58	51.6 52.6 54.6 55.6 57.6	5.7		
P 60 P 62 P 63 P 65 P 67	$59.6 \\ 61.6 \\ 62.6 \\ 64.6 \\ 66.6$	5.7		
P 70 P 71 P 75 P 80 P 85	69.6 70.6 74.6 79.6 84.6	5.7		

O-Ring Size [Part 1] JIS B 2401

Data Sheet

JIS	Y E S	Remarks		
JIS B 2401-1A- P*	SO-NA- ^P [*] _G [*]	For Use with Mineral Oils	Spring Hardness: 70	
JIS B 2401-1B- P* G*	SO-NB- ^P * G*	Material: Nitrile Rubber	Spring Hardness: 90	
JIS B 2401-4D- P* G*	SO-FA- P* G*	For Use with Heat Resistant/Synthetic Oils	Spring Hardness: 70	
12	SO-FB-P*	Material: Fluororubber	Spring Hardness: 9	

Note) 1. "-P*" denotes dynamic O-rings; "-G*" denotes static O-rings.
2. The basic sizes for -1A, -1B, and -4D are the same.

JIS B 2401-1 ^A B-P*					
Designation	Actual S	ize (mm)			
Designation -	d	w			
P 90 P 95 P 100 P 102 P 105	89.6 94.6 99.6 101.6 104.6	5.7			
P 110 P 112 P 115 P 120 P 125	$ 109.6 \\ 111.6 \\ 114.6 \\ 119.6 \\ 124.6 $	5.7			
P 130 P 132 P 135 P 140 P 145	$129.6 \\131.6 \\134.6 \\139.6 \\144.6$	5.7			
P 150	149.6	5.7			
P 150A P 155 P 160 P 165	149.5 154.5 159.5 164.5	8.4			
P 170 P 175 P 180 P 185 P 190	169.5 174.5 179.5 184.5 189.5	8.4			
P 195 P 200 P 205 P 209 P 210	194.5 199.5 204.5 208.5 209.5	8.4			
P 215 P 220 P 225 P 230 P 235	214.5 219.5 224.5 229.5 234.5	8.4			
P 240 P 245 P 250 P 255 P 260	239.5 244.5 249.5 254.5 259.5	8.4			
P 265 P 270 P 275 P 280 P 285	264.5 269.5 274.5 279.5 284.5	8.4			
P 290 P 295 P 300 P 315 P 320	289.5 294.5 299.5 314.5 319.5	8.4			
P 335 P 340 P 355 P 360 P 375	334.5 339.5 354.5 359.5 374.5	8.4			
P 385 P 400	384.5 399.5	8.4			

JIS B 2401-1 ^A B-G*			
Designation	Actual Si	ze (mm)	
Deelghadon	d	w	
G 25 G 30 G 35 G 40 G 45	24.4 29.4 34.4 39.4 44.4	3.1	
G 50 G 55 G 60 G 65 G 70	49.4 54.4 59.4 64.4 69.4	3.1	
G 75 G 80 G 85 G 90 G 95	74.4 79.4 84.4 89.4 94.4	3.1	
G 100 G 105 G 110 G 115 G 120	99.4 104.4 109.4 114.4 119.4	3.1	
G 125 G 130 G 135 G 140 G 145	124.4 129.4 134.4 139.4 144.4	3.1	
G 150 G 155 G 160 G 165 G 170	149.3 154.3 159.3 164.3 169.3	5.7	
G 175 G 180 G 185 G 190 G 195	174.3 179.3 184.3 189.3 194.3	5.7	
G 200 G 210 G 220 G 230 G 240	199.3 209.3 219.3 229.3 239.3	5.7	
G 250 G 260 G 270 G 280 G 290	249.3 259.3 269.3 279.3 289.3	5.7	
G 300	299 <mark>.</mark> 3	5.7	

Data Sheet

O-Ring Size

YUKEN

O-Ring Size [Part 2] AS 568 (Former ARP 568), Aerospace Size Standard for O-Rings

Data Sheet

		_			<u>∳w</u>	AS 568	Actual S	Size (mm)	e (mm) AS 568 Actual		Size (mm)	AS 568	Actual S	Size (mm)
24	\square	\mathcal{Y}				Desig- nation	w	d	Desig- nation	w	d	Desig- nation	w	d
(No No)	17 -			176 177 178	2.62	234.62 240.97 247.32	275 276 277 278 279	3.53	266.29 278.99 291.69 304.39 329.79	385 386 387 388 389	5.33	405.26 430.66 456.07 481.41 506.81
AS 568 Desig- nation	Actual S	ize (mm) d	AS 568 Desig- nation	Actual S	Gize (mm)	210 211 212 213 214	3.53	18.64 20.22 21.82 23.39 24.99	280 281 282 283 284	3.53	355.19 380.59 405.26 430.66 456.06	390 391 392 393 394	5.33	$\begin{array}{c} 532.21 \\ 557.61 \\ 582.68 \\ 608.08 \\ 633.48 \end{array}$
001 002 003 004	$1.02 \\ 1.27 \\ 1.52 \\ 1.78$	0.74 1.07 1.42 1.78	116 117 118 119	2.62	18.72 20.29 21.89 23.47	215 216 217 218	3.53	26.57 28.17 29.74 31.34	325 326 327 328	5.33	37.46 40.64 43.82 46.99	395 425 426	5.33	658.88 113.66 116.84
005 006 007	1.78	2.57 2.90 3.68	120 121 122		25.07 26.64 28.24	219 220 221		32.92 34.52 36.09	329 330 331		50.16 53.34 56.52	427 428 429	6.98	120.02 123.19 126.36
008 009 010	1.78	4.47 5.28 6.07	122 123 124 125	2.62	29.82 31.42 32.99	222 222 223 224	3.53	30.09 37.69 40.87 44.04	331 332 333 334	5.33	59.69 62.86 66.04	430 431 432 433	6.98	129.54 132.72 135.89 139.06
011 012 013 014 015	1.78	7.65 9.25 10.82 12.42 14.00	126 127 128 129 130	2.62	34.59 36.17 37.77 39.34 40.94	225 226 227 228 229	3.53	47.22 50.39 53.57 56.74 59.92	335 336 337 338 339	5.33	69.22 72.39 75.56 78.74 81.92	434 435 436 437	6.98	142.24 145.42 148.59 151.76
016 017 018 019 020	1.78	15.60 17.17 18.77 20.35 21.95	131 132 133 134 135	2.62	42.52 44.12 45.69 47.29 48.89	230 231 232 233 234	3.53	63.09 66.27 69.44 72.62 75.79	340 341 342 343 344	5.33	85.09 88.26 91.44 94.62 97.79	438 439 440 441 442	6.98	158.12 164.46 170.82 177.16 183.52
021 022 023 024	1.78	23.52 25.12 26.70 28.30	136 137 138 139	2.62	50.47 52.07 53.64 55.24	235 236 237 238	3.53	78.97 82.14 85.32 88.49	345 346 347 348	5.33	100.96 104.14 107.32 110.49	443 444 445 446		189.86 196.22 202.56 215.27
025 025 026 027	0	29.87 31.47 33.05	140 141 142	0	56.82 58.42 59.99	239 240 241	0	91.67 94.84 98.02	349 350 351	0	110.45 113.66 116.84 120.02	447 448 449	6.98	227.96 240.67 253.36
028 029 030	1.78	34.65 37.82 41.00	142 143 144 145	2.62	61.59 63.17 64.77	241 242 243 244	3.53	101.19 104.37 107.54	352 353 354	5.33	120.02 123.19 126.36 129.54	450 451 452 453	6.98	266.07 278.76 291.47 304.16
031 032 033 034 035	1.78	44.17 47.35 50.52 53.70 56.87	146 147 148 149 150	2.62	66.34 67.94 69.52 71.12 72.62	245 246 247 248 249	3.53	110.72 113.89 117.07 120.24 123.42	355 356 357 358 359	5.33	132.72 135.89 139.07 142.24 145.42	454 455 456 457 458	6.98	316.87 329.56 342.27 354.96 367.67
036 037 038 039 040	1.78	60.05 63.22 66.40 69.57 72.75	151 152 153 154 155	2.62	75.87 82.22 88.57 94.92 101.27	250 251 252 253 254	3.53	126.59 129.77 132.94 136.12 139.29	360 361 362 363 364	5. <mark>3</mark> 3	148.59 151.77 158.12 164.47 170.82	459 460 461 462	6.98	380.36 393.07 405.26 417.96
041 042 043 044 045	1.78	75.92 82.27 88.62 94.97 101.32	156 157 158 159 160	2.62	107.62 113.97 120.32 126.67 133.02	255 256 257 258 259	3.53	142.47 145.64 148.82 151.99 158.34	365 366 367 368 369	5.33	177.17 183.52 189.87 196.22 202.57	463 464 465 466 467	6.98	430.66 443.36 456.06 468.76 481.46
046 047 048 049	1.78	107.67 114.02 120.37 126.72	161 162 163 164	2.62	139.37 145.72 152.07 158.42	260 261 262 263	3.53	164.69 171.04 177.39 183.74	370 371 372 373	5.33	208.92 215.27 221.62 227.97	468 469 470 471	0	494.16 506.86 532.26 557.66
050 106 107		133.07 4.42 5.23	165 166 167		164.77 171.12 177.47	264 265 266		190.09 196.44 202.79	374 375 376		234.32 240.67 247.67	472 473 474	6.98	582.68 608.08 633.48
108 109 110	2.62	6.02 7.59 9.19	168 169 170	2.62	183.82 190.17 196.52	267 268 269	3.53	202.19 209.14 215.49 221.84	377 378 379	5.33	253.37 266.07 278.77	475	6.98	658.88
111 112 113 114 115	2.62	10.77 12.37 13.94 15.54 17.12	171 172 173 174 175	2.62	202.87 209.22 215.57 221.92 228.27	270 271 272 273 274	3.53	228.19 234.54 240.89 247.24 253.59	380 381 382 383 384	5.33	291.47 304.17 329.57 354.97 380.37			

International System of Units (SI) [Part 1] (According to JIS Z 8203 "SI units and recommendations for the use of their multiples and of certain other units" and Z 8202

Data Sheet

"Quantities and units")

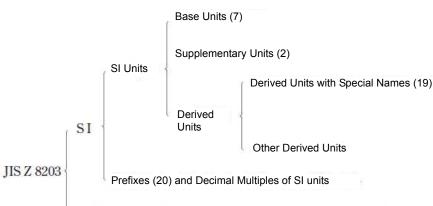
SI stands for Système International d'Unités in French (International System of Units in English), an internationally accepted official abbreviation.

Purpose and historical background of the SI

Origin of the term SI (International System of Units)

The Metre Convention was signed in 1875 to oversee the keeping of metric system as a unified international system of units. Then, the metric system had more than ten variations, losing its consistency. At the 9th General Conference on Weights and Measures (Conférence Générale des Poids et Mesures: CGPM) in 1948, a resolution was adopted "to use a unified system of units in all fields". The International Committee for Weights and Measures (Comité International des Poids et Mesures: CIPM) of the treaty organization started a process to establish a unified system and determined the framework of the SI in 1960. In 1973, the International Organization for Standardization (ISO) developed the standard ISO 1000, which describes SI units and recommendations for the use of them, leading to global adoption of the system. In Japan, a policy to introduce SI units into JIS through the following three phases was determined in 1972; the introduction of SI units into JIS progressed rapidly.

First phase: Use of conventional units followed by SI units e.g. 1 kgf [9.8 N]


Second phase: Use of SI units followed by conventional units e.g. 10 N {1.02 kgf} e.g. 10 N

Third phase: Use of SI units only

The Measurement Act in Japan was fully revised in 1992 and enacted in 1993 to unify statutory measurement units into SI units. Under the new Measurement Act, a transition period of up to seven years was granted before the exclusive use of SI units for "pressure" and "moment of force" in the field of hydraulics, and the period expired on September 30, 1999. Since October 1, 1999, it has been mandatory to use SI units as statutory measurement units for transactions and certifications. Commercially available pressure gauges are in SI units. The units used in this catalogue are SI units.

All units used in this catalogue are SI units as applicable in the third phase of the SI implementation process.

Structure of SI units and JIS Z 8203

Important Non-SI Units Accepted for Use with SI Units

Base Units

Quantity	Base Unit		
Quantity	Name	Symbol	
Length	meter	m	
Mass	kilogram	kg	
Time	second	s	
Electric Current	ampere	A	
Thermodynamic Temperature	kelvin	K	
Amount of Substance	mole	mol	
Luminous Intensity	candela	cd	

•	Supplementary	Units
---	---------------	-------

Quantity	Supplementary Unit		
	Name	Symbol	
Plane Angle	radian	rad	
Solid Angle	steradian	sr	

Data Sheet nternational System <u>Units (S</u>

International System of Units (SI) [Part 2]

Prefixes

Prefixes are used to form decimal multiples of SI units.

Linit Multiplier	Prefix		
Unit Multiplier	Name	Symbol	
10^{24}	yotta	Y	
1021	zetta	Z	
1018	exa	E	
1015	peta	Р	
1012	tera	Т	
109	giga	G	
10^{6}	mega	М	
10^{3}	kilo	k	
10 ²	hecto	h	
10	deka	da	
10-1	deci	d	
10-2	centi	с	
10-3	milli	m	
10 ⁻⁶	micro	μ	
10-9	nano	n	
10-12	pico	р	
10-15	femto	f	
10-18	atto	a	
10-21	zepto	z	
10-24	yocto	У	

Non-SI units accepted for use with SI units

Quantity	Unit Name	Unit Symbol
Time	minute hour day	min h d
Plane Angle	degree minute second	0 1 1
Volume	liter	l, L*
Mass	Aass metric ton	

★ The letter "L" may be used as the symbol for liter, when the symbol "I" for liter might be confused with any other character (as a general rule, Yuken uses "L").

 Units accepted for use with SI units for usefulness in special fields

Quantity Unit Name		Unit Symbol
Energy	electronvolt	eV
Atomic Mass	Atomic Mass atomic mass unit	
Distance	astronomical unit	AU
Diotarioo	parsec	pc
Fluid Pressure bar		bar

Derived units

Derived units are expressed algebraically in terms of base units and supplementary units (by means of the mathematical symbols of multiplication and division) in the International System of Units.

Derived units expressed in terms of SI base units

Orregatite	Derived Unit			
Quantity	Name	Symbol		
Area	square meter	m²		
Volume	cubic meter	m³		
Speed, Velocity	meter per second	m/s		
Acceleration	meter per second squared	m/s ²		
Wavenumber	reciprocal meter	m ⁻¹		
Density	kilogram per cubic meter	kg/m ³		
Current Density	ampere per square meter	A/m ²		
Magnetic Field Strength	ampere per meter	A/m		
(Amount-of-substance) Concentration	mole per cubic meter	mol/m ³		
Specific Volume	cubic meter per kilogram	m³/kg		
Luminance	candela per square meter	cd/m ²		

Derived units with special names

Quantity	Derived Unit			
Quantity	Name	Symbol	Definition	
Frequency	hertz	Hz	s⁻¹	
Force	newton	Ν	kg∙m/s²	
Pressure, Stress	pascal	Ра	N/m ²	
Energy, Work, Amount of Heat	joule	J	N∙m	
Amount of Work Done Per Time, Motive Power, Electrical Power	watt	W	J/s	
Electric Charge, Amount of Electricity	coulomb	С	A∙s	
Electric Potential, Potential Difference, Voltage, Electromotive Force	volt	V	W/A	
Capacitance	farad	F	C/V	
Electric Resistance	ohm	Ω	V/A	
(Electric) Conductance	siemens	S	A/V	
Magnetic Flux	weber	Wb	V∙s	
Magnetic Flux Density, Magnetic Induction	tesla	Т	Wb/m ²	
Inductance	henry	Н	Wb/A	
Celsius Temperature	degree celsius/degree	°C		
Luminous Flux	lumen	lm	cd∙sy	
Illuminance	lux	lx	lm/m ²	
Activity Referred to a Radionuclide	becquerel	Bq	S⁻¹	
Absorbed Dose	gray	Gy	J/kg	
Dose Equivalent	sievert	Sv	Gy	

International System of Units (SI) [Part 3]

Use of SI units

Space and T	ime		Dynamics
Quantity	SI Unit	Decimal Multiple Unit	Quantity
Plane Angle	rad (radian)	mrad μ rad	Density, Concentration
Solid Angle	sr (steradian)		
Length, Width, Height, Thickness, Radius, Diameter, Length of Path Traveled, Distance	m (meter)	km dm cm mm μm nm pm	Moment of Inertia Force
Area	m ² (square meter)	km ² dm ² cm ²	Moment of
Volume	m ³ (cubic meter)	dm ³ cm ³ mm ³	Force
Time	S (second)	ks ms μs ns	Pressure
Angular Velocity	rad/s (radian per second)		
Speed, Velocity	m/s (meter per second) m/s ²	<u></u>	Stress
Acceleration	m/S (meter per second squared)		
Periodic and	Related Ph	enomena	Viscosity
Frequency		THz GHz MHz kHz	Kinematic Viscosity
	Hz (hertz)		Work, Energy Amount of Heat
Rotational Speed, Revolutions	S ⁻¹ (per second)		Tiout
Dynamics			Power, Amoun of Work Done Per Unit of
Mass	kg (kilogram)	Mg	Time
		g mg μg	Flow Rate

Dynamics		
Quantity	SI Unit	Decimal Multiple Unit
Density, Concentration	kg/m ³ (kilogram per cubic meter)	mg/m ³ or kg/dm ³ or g/cm ³
Moment of Inertia	kg·m ^² (kilogram meter squared)	
Force	N (newton)	MN kN
		mN μN
Moment of Force	N∙m	MN∙m kN∙m
	(newton meter)	mN∙m μN∙m
Pressure	Pa (pascal)	GPa MPa kPa
1	J	mPa μPa
Stress	(pascal or newton per square meter) Pa or N/m ²	GPa, MPa or N/mm ² , kPa
Viscosity	Pa·s (pascal second)	mPa·s
Kinematic Viscosity	m ² /s (square meter per second)	mm²/s
Work, Energy, Amount of Heat		TJ GJ MJ
	J (joule)	kJ mJ
Power, Amount of Work Done Per Unit of Time	W (watt)	GW MW kW mW μW
Flow Rate	m ³ /s (cubic meter per second)	

Heat		
Quantity	SI Unit	Decimal Multiple Unit
Thermodynamic Temperature	K (kelvin)	
Celsius Temperature	^o C (degree Celsius or degree)	
Temperature Interval, Temperature Difference	K or °C	
Amount of Heat	J (joule)	TJ GJ MJ kJ mJ
Heat Flow Rate	W (watt)	kW
Thermal Conductivity	W/(m·K)	
Coefficient of Heat Transfer	$W/(m^2 \cdot K)$	
Specific Heat Capacity	J/(kg·K)	kJ/(kg·K)

Electricity and Magnetism		
Electric Current	A (ampere)	kA mA μA nA pA
Electric Potential, Electric Potential Difference, Voltage, Electromotive Force	V (volt)	MV kV mV μV
(Electric) Resistance (Direct Current)	Ω (ohm)	$ \begin{array}{c} G \Omega \\ M \Omega \\ (Remarks) M \Omega \\ \text{is also referred} \\ \text{to as megohm.} \\ k \Omega \\ m \Omega \\ \mu \Omega \end{array} $
(Active) Electric Power	W (watt)	TW GW MW kW mW μW nW
Sound		
Frequency	Hz (hertz)	GHz MHz kHz

	Principal and a second s
	Sound Pressure Level*
ĺ	*This SI unit is not provided by ISO
	1000-1973 and ISO 31 Part 7-1978, but
	JIS adopts and specifies dB (decibel) as
	a unit accepted for use with SI units.

SI unit conversion factors table

(Shaded columns represent SI units.)

N Newton	dyn	kgf
1	1×10^{5}	1.01972×10^{-1}
1×10^{-5}	1	1.01972×10^{-6}
9.806 65	9.806 65×10 ⁵	1

N·m Newton meter	kgf∙m
1 9.807	0.101 972 1
Note) 1 N·m = 1 kg•m²/s²	

Moment of inertia

Pressure

Pa pascal	bar	kgf/cm ²	atm	mmH2O	mmHg or Torr
1	1×10 ⁻⁵	1.01972×10^{-5}	$9.86923{ imes}10^{-6}$	1.01972×10^{-1}	$7.500.62 \times 10^{-3}$
1×10^{5}	1	1.019 72	$9.86923{ imes}10^{-1}$	$1.01972{ imes}10^4$	$7.500.62 \times 10^{2}$
$9.806~65 \times 10^4$	$9.806.65 \times 10^{-1}$	1	$9.67841{ imes}10^{-1}$	1×10^{4}	7.35559×10^2
1.01325×10^{5}	1.013 25	1.033 23	1	1.03323×10^4	$7.600\ 00 \times 10^2$
9.806 65	$9.806~65 \times 10^{-5}$	1×10^{-4}	9.67841×10^{-5}	1	7.35559×10^{-2}
$1.333\ 22{ imes}10^2$	1.33322×10^{-3}	1.35951×10^{-3}	$1.31579{ imes}10^{-3}$	1.359 51×10	1

Note) 1 Pa = 1 N/m2

Stress

Pa pascal	MPa or N/mm ² Megapascal or newton per square milimeter	kgf/mm ²	kgf/cm ²
1	1×10^{-6}	1.019 72×10 ⁻⁷	1.01972×10^{-5}
1×10^{6}	1	1.01972×10^{-1}	1.01972×10
$9.80665{ imes}10^{6}$	9.806 65	1	1×10^{2}
$9.80665{ imes}10^4$	$9.806.65 \times 10^{-2}$	1×10^{-2}	1

Work, energy, amount of heat

J joule	kW∙h	kgf∙m	kcal
1	2.777 78×10 ⁻⁷	1.01972×10^{-1}	2.38889×10^{-4}
3.600×10^{6}	1	3.67098×10^{5}	8.6000×10^{2}
9.806 65	$2.724\ 07 \times 10^{-6}$	1	$2.34270{ imes}10^{-3}$
4.18605×10^3	1.16279×10^{-3}	4.26858×10^{2}	1

Note) 1 J = 1 W•s, 1 W•h = 3,600 W•s 1 cal = 4.186 05 J (according to the Measurement Act)

Power (amount of work done per unit of time or motive power)

kW kilowatt	kgf∙m/s	PS	kcal/h
1	1.01972×10^{2}	1.359 62	$8.600 \ 0 \ \times 10^2$
$9.806.65 imes 10^{-3}$	1	$1.33333{ imes}10^{-2}$	8.433 71
7.355×10^{-1}	7.5 ×10	1	$6.32529{ imes}10^2$
$1.16279{ imes}10^{-3}$	1.18572×10^{-1}	$1.58095{ imes}10^{-3}$	1

Note) 1 W = 1 J/s, PS: French horsepower 1 PS = 0.735 5 kW (according to the Act for Enforcement of the Measurement Act) 1 cal = 4.186 05 J (according to the Measurement Act)

mennoaynanno	
temperature	0011
Celsius temperature	°C (degr

ree) T_2 : Celsius temperature T_3 : °F

J/(kg•K) joule per kilogram kelvin	kcal/(kg⋅℃) cal/(g⋅℃)
$\frac{1}{4.18605 \times 10^3}$	2.38889×10^{-4}

Viscosity

Pa•s pascal second	cP	Р
1	1×10^{3}	1×10
1×10^{-3}	1	1×10^{-2}
1×10^{-1}	1×10^{2}	1

Kinematic viscosity

m ² /s square meter per second	cSt	St
1	1×10^{6}	1×10^{4}
1×10^{-6}	1	1×10 ⁻²
1×10 ⁻⁴	1×10^{2}	1

Thermal conductivity

W/(m•K) watt per meter kelvin	kcal∕(h∙m∙°C)
1 1.162 79	$8.600 \ 0 \times 10^{-1}$ 1
Note) 1 cal = 4.186 05 J (acco	ording to the Measurement Act)

Coefficient of heat transfer

W/(m ² •K) watt per meter squared kelvin	kcal/(h⋅m²⋅°C)
1	8.600 0×10 ⁻¹
1.162 79	1

Data Sheet